If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5c^2+10c=0
a = 5; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·5·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*5}=\frac{-20}{10} =-2 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*5}=\frac{0}{10} =0 $
| 2(x+5)=3(x-12) | | 2/3n=15 | | 3^(6x-5)=5^(2x) | | 7b^2-28b=0 | | -16t2+500=0 | | 19r-10r=18 | | 8c^2+40c=0 | | y=1-(1-2)*(1-3) | | 1.6+y=-7.6 | | X^x-3x=0 | | y=1-(1-1)*(1-3) | | 1/4x=1/10 | | y=2R-05+8E-05 | | (2x+1)+41=180 | | -4w2-7w=3w2-6 | | -17x=459 | | y=0*0-(0-2)*(0-3) | | 1x+5=1.5x+2.5 | | 150=-4.9x^2+65x+0 | | 21x^2-49x+14=0 | | -3+x=57 | | 10=-3u+8(u+5) | | −20−4=x−10 | | 6y+5(y-2)=12 | | x=200-(.2x) | | 7+24n=35+17n | | 7x+17=92.5 | | -7(18+8y)+4y=-6 | | 8r-32=4r+8 | | 4x^2-32x+18=0 | | 5.5+7b=19.5 | | 7x+3=28+5x |